Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Braz. j. microbiol ; 46(2): 337-346, Apr-Jun/2015. tab
Article in English | LILACS | ID: lil-749736

ABSTRACT

Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.


Subject(s)
Biotechnology/methods , Fungi/enzymology , Peptide Hydrolases/isolation & purification , Peptide Hydrolases/metabolism
2.
São Paulo; s.n; s.n; 2015. 125 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-836720

ABSTRACT

Proteases ácidas pertencem a um importante grupo de enzimas industriais produzidas por fungos filamentosos, com aplicações na indústria de alimentos, de couro, farmacêutica e de cosméticos. O objetivo principal deste trabalho foi avaliar a produção de proteases ácidas extracelulares de fungos filamentosos isolados do solo do cerrado do centro-oeste brasileiro. Inicialmente, foi realizada uma triagem para avaliar a capacidade de 17 linhagens de fungos quanto à produção de protease em meio de cultura contendo Agar-leite. O fungo Aspergillus foetidus foi selecionado como melhor produtor de protease ácida extracelular. Visando à otimização da produção de proteases pelo fungo selecionado, avaliou-se a influência de diversos fatores no cultivo (pH, temperatura, agitação e diferentes fontes de nitrogênio e carbono). Após essa etapa, um planejamento experimental estatístico foi realizado com as variáveis independentes temperatura, pH inicial do meio e fonte de carbono e nitrogênio. A produção máxima de protease foi encontrada (63,7 U/mL) nas condições: pH inicial do meio igual a 7,0 a 28 ºC, 150 rpm em peptona 2% (p/v). Os estudos em biorreator demonstraram produção de protease nas condições de agitação e aeração iguais à 300 rpm e 1,0 vvm, após 120 h de cultivo. Os ensaios com diferentes temperaturas para a estimativa dos parâmetros termodinâmicos demonstraram que a protease ácida produzida pelo fungo é altamente estável apresentando máxima atividade em pH 5,0 e temperatura ótima igual a 55ºC. E, finalmente, para a purificação da enzima foi realizada cromatografia de gel-filtração. A enzima apresentou massa molecular de 50,6 kDa, e a análise do zimograma confirmou a atividade proteolítica. Além disso, a protease purificada foi inibida pelo composto pepstatina, indicando uma característica de protease ácida. Esses resultados obtidos demonstram um fungo filamentoso produtor de uma nova protease ácida com potencial aplicação para indústria farmacêutica e de cosméticos


The acid proteases belong to the most important group of industrial enzymes produced by filamentous fungi, with applications in the food, leather, pharmaceutical and cosmetics industries. This study aimed the evaluation of extracellular acid proteases production from filamentous fungi isolated from different samples of the midwestern Brazil cerrado. Initially, a screening was performed to assess the ability of the 17 strains of yeast for production of protease-agar medium containing milk culture. The Aspergillus foetidus was selected as the best producer. Aimed at optimizing the production of proteases by the selected fungus, first evaluated the influence of various factors on the cultivation (pH, temperatura, agitation and different sources of nitrogen and carbon). After this step, a statistical experimental design was carried out with the independent variables temperatura, initial pH of the medium and source of carbon and nitrogen. The best conditions for protease production were (63.7 U / mL): initial pH values greater than 7.0, at 28 °C, 150 rpm peptone 2% (w/v). Aiming future production of this protease in industrial scale, studies have shown better in bioreactor protease production under the conditions of agitation and aeration equal to 300 rpm and 1.0 vvm, after 120 h of cultive. The tests at different temperaturas to estimate the thermodynamic parameters showed that the acid protease produced by the fungus is highly stable with maximum activity at pH 5.0 and optimum temperatura of 55 °C. And finally, for the purification of the enzyme were performed gel-filtration chromatography. The enzyme had a molecular mass of 50.6 kDa, and the analysis of the zymogram showed a proteolytic band. Furthermore, the purified protease was inhibited by pepstatin compound, indicating a feature of acid protease. These results demonstrate a new filamentous fungus producing acid protease with potential application to pharmaceuticals and cosmetics


Subject(s)
Peptide Hydrolases , Fungi , Aspergillus , Biotechnology , Technology, Pharmaceutical
3.
Braz. j. microbiol ; 41(4): 850-861, Oct.-Dec. 2010. ilus, tab
Article in English | LILACS | ID: lil-595726

ABSTRACT

Amylases are one of the main enzymes used in industry. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Amylases have potential application in a wide number of industrial processes such as food, fermentation and pharmaceutical industries. α-Amylases can be obtained from plants, animals and microorganisms. However, enzymes from fungal and bacterial sources have dominated applications in industrial sectors. The production of α-amylase is essential for conversion of starches into oligosaccharides. Starch is an important constituent of the human diet and is a major storage product of many economically important crops such as wheat, rice, maize, tapioca, and potato. Starch-converting enzymes are used in the production of maltodextrin, modified starches, or glucose and fructose syrups. A large number of microbial α-amylases has applications in different industrial sectors such as food, textile, paper and detergent industries. The production of α-amylases has generally been carried out using submerged fermentation, but solid state fermentation systems appear as a promising technology. The properties of each α-amylase such as thermostability, pH profile, pH stability, and Ca-independency are important in the development of fermentation process. This review focuses on the production of bacterial and fungal α-amylases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL